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IONIZATION AND PULSE LETHARGY EFFECTS 
IN INVERSE CHERENKOV ACCELERATORS 

I. Introduction 

Although high power sources of electromagnetic radiation, such as lasers, are capable of 

providing extraordinarily high electric fields for the acceleration of particles, numerous 

fundamental and technological issues must be resolved before practical high gradient accelerators 

can be realized [1-11]. There are three fundamental issues that must be addressed in any type of 

high gradient accelerator. These are: i) radiation beam guiding over extended distances, ii) phase 

coherence (phase velocity slippage) between the accelerated particles and the electromagnetic 

field, and iii) material ionization arising from either the driver fields or from the accelerated 

particles. 

In this paper we analyze and discuss the fundamental issues as they relate to the inverse 

Cherenkov accelerator (ICA) [12-18]. The electromagnetic driver in the ICA can be an intense 

laser or millimeter wave pulse. In free space and in the absence of boundaries the phase velocity 

of the accelerating field exceeds the vacuum speed of light, c. As a consequence, particles 

continually phase slip relative to the field, i.e., phase velocity slippage and, after a slippage 

distance, acceleration ceases. In the ICA the phase velocity of the accelerating field is reduced by 

introducing a gas in the accelerating region or by lining the interior of a waveguide with a 

dielectric material. 

A dielectrically lined or gas-filled waveguide ICA configuration, i) avoids diffraction of the 

driving electromagnetic beam, ii) overcomes electron slippage, and iii) the acceleration in the 

dielectrically lined ICA is in a vacuum. However, the large electric fields associated with short, 

intense electromagnetic pulses can readily ionize the dielectric material or gas [5,19-22]. Partial 

volume ionization will modify the dispersive characteristics of the waveguide, due to plasma 
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formation. A small amount of ionization can result in the disruption of the acceleration process 

since the phase velocity of the electromagnetic fields will be altered, resulting in phase velocity 

slippage. Ionization effects therefore impede an upper limit on the pulse duration. However, the 

driving pulse cannot be arbitrarily short since the pulse, having a group velocity less than c, can 

slip behind the accelerated electrons. This effect is referred to as group velocity slippage or pulse 

lethargy and places a lower limit on the pulse duration. The combination of ionization and pulse 

lethargy effects impose severe limitations on the energy gain in inverse Cherenkov accelerators. 

For sufficiently high current densities, the self-fields of the accelerated electron beam may also 

result in ionization. Self-field ionization processes will not be considered in this paper. 

This paper is organized as follows. In Section II we derive and discuss various limits of 

the dispersion relation for transverse-magnetic (TM) modes of a dielectrically-lined optical 

waveguide. This TM mode consists of a radial and an axial electric field as well as an azimuthal 

magnetic field. The axial electric field, which is responsible for acceleration, is peaked on axis, 

while the radial electric field vanishes on axis. In Section III we derive the critical average plasma 

density. When the average plasma density reaches this critical value the dispersive properties are 

modified and the phase velocity of the electromagnetic wave is significantly altered, resulting in 

phase velocity slippage. In Section IV the buildup of plasma density within the dielectric material 

is analyzed. Here we assume that ionization takes place within the dielectric, i.e., surface effects 

are neglected. This analysis is based on a rate equation for plasma generation, which includes 

tunneling and collisional (avalanche) ionization. In Section V we obtain an expression for the 

limit on the electromagnetic pulse duration in terms of the accelerating gradient The case of a 

gas-filled waveguide ICA is analyzed in Section VI. The maximum accelerated electron energy 



imposed by group velocity slippage, i.e., pulse lethargy and ionization, is obtained in Section VIL 

Section'Vin presents numerical results for the pulse duration and accelerating gradient, limited by 

ionization and pulse lethargy, for a 10 um, 1 mm and 1 cm wavelength driver in the two ICA 

configurations. The summary and discussion is given in Section DC 

II.       Fields and Dispersion Relation for Inverse Cherenkov Accelerator with Dielectric Liner 

A.       Axially Symmetric Transverse Magnetic Mode 

The dispersion characteristics of a dielectrically lined waveguide is analyzed in this section. 

A dielectrically lined waveguide can support an axially symmetric transverse-magnetic CTM) 

mode. The cross-sectional view of the dielectrically-lined waveguide is shown in Fig. 1, where 

the inner surface of the dielectric is at r = a and the conducting outer surface is at r = b. The 

particular TM mode under consideration consists of radial and axial electric fields as well as an 

azimuthal magnetic field. The field components within the central vacuum region (0 < r < a) are 

Er = E0(Ji(kj.r)/ JjCkj.aJXCz.O + c.c, (la) 

E2 =i(k±/k)E0(J0(kj.r)/ J,(k±a))f(z,t) + c.c., (lb) 

Be =(ö/ck)E0(J1(k1r)/J!(k±a))f(z,t)+c.c., (lc) 

and within the outer dielectric region (a < r < b), 

Er = (AJj(ar) + BY,(cxr)X(z,t) + c.c., (2a) 

Ez = i(a/ k)(AJ0(ar)+BY0(ar))f(z,t)+c.c., (2b) 

Be = e(co/ck)(AJ,(ar)+BY,(ar))f(z,t)+c.c., (2c) 

where co is the frequency, k is the axial wavenumber, f(z,t) = (l/2)exp (i(kz - cot)), 



k± = (to2 / c2 - k2),/2 is the transverse wavenuraber within the inner region, a = (ea)2/c2 - k2)"2 

is the transverse wavenuraber within the outer region, E is the dielectric constant, Eo, A, B are the 

constant amplitudes, J„(x) and YB(x) are the ordinary Bessel functions of order n and c.c. denotes 

the complex conjugate. The accelerating axial electric field given by Eq. (lb) is peaked along the 

z-axis. 

For application to electron acceleration we will consider the regime where the phase 

velocity is near c, i.e., vph s CD / k = c. For phase velocities equal to c, i.e., kj. = 0, the axial 

electric field is independent of radial position and given by 

X 
E2=i—E0f(z,t)+c.c, 

7ta 
(3) 

where X = 2TC/G) is the wavelength. The axial and radial components of the electric field for 

phase velocity equal to c are shown in Fig. 2. 

B.       Dispersion Relation 

Applying the appropriate boundary conditions at r = a and r = b we obtain the following 

dispersion relation for the TM mode, 

Jo(kia) = a 
1 Jj(kxa)    4 

wherea2=£ü>2/c2-k2=k2+(e-l)co2/c2 and 

(ab)Y0(aa)-J0(oca)Y0(ab)> 

(ab)Y,(aa)-J1(aa)Y0(ab)> 

(4) 

In addition, the amplitudes A and B in terms of Eo are 



A«-£L Yo(ab) 
E Jo(ab)Y1(aa)-J1(oa)Yo(ocb) 

B = -AJ0(ab)/Y0(ab). 

(5a) 

(5b) 

For phase velocities close to c, the dispersion relation can be simplified by taking kja to be small 

on the left-hand side of Eq. (4), giving 

co2/c2-k2=8/a2-F(a0), (6) 

where a0 = (e - l)1/2o> / c. In obtaining Eq. (6) the small argument forms J0(x) = 1 - x2/4 and 

Ji(x) = x/2 - x3/16 were used. 

The dispersion relation in Eq. (6), which is valid for phase velocities near c, can be further 

simplified by considering several limiting regimes. A relevant regime corresponds to the limit 

where the waveguide is large and/or the dielectric constant is far from unity, corresponding to the 

inequality ocoa » 1, i.e., 

X/a«27t(e-l),/2. 

The dispersion relation in this regime is given by 

(7) 

caz/cz-kz=8/a^~ 
ea 

tan(oc0(b-a)). (8) 

In obtaining Eq. (8) the asymptotic form F(a0) = (4a0 / ea)tan(a0(b - a)) has been used. The 

components of the electric field within the dielectric are 

",_, cos[a0(b-r)] 

-0'" ' 
*V 

VEz/ 

,1/2 cos[oc0(b-a)] 

iA, sin[a0(b-r)] 

f(z,t) + c.c, 

naän[a0(b-a)] 
f(z,t) + c.c. 

(9a) 

(9b) 



The dispersion relation in Eq. (8) can be solved explicitly in three cases. To obtain the 

frequencies associated with these cases it is convenient to rewrite the dispersion relation in Eq. 

(8), for phase velocities equal to c, in the form 

.   tanS = 2£(b-a)/(a£), (1°) 

where £ = <Xo(b - a). In Case 1 the right-hand side (RHS) of Eq. (10) is much greater than unity, 

i.e., A/a »7t(e - l)m/z, and £ = (/+1 / 2)TC where i = 0,U,.... This case is compatible with 

the inequality in Eq. (7) provided e is sufficiently large compared to unity. In Case 2 the RHS is 

small compared to unity, i.e., A/a « *(E - l),/2/e, and % » *TI, where t is a large integer. Note 

that the inequality defining this case is more restrictive than that in Eq. (7). Finally, Case 3 

corresponds to £ « 1, i.e., when the liner is very thin, (b - a)/A «(e - l)"I/2/(27t). We emphasize 

that the inequality in Eq. (7) applies to all three cases. The wavelengths associated with these 

cases are obtained from Eq. (10), 

\e + l/lf\ (Ha) 

r\ (lib) 

^(T^V- (llc) 
i.2^i(e-l),/2. a a 

l(2e)' 

where Eq. (1 la) corresponds to Case 1 with / nodes in the liner, Eq. (1 lb) corresponds to Case 

2 with I nodes in the liner, and Eq. (1 lc) corresponds to Case 3 with no nodes in the liner. The 

radial component of the electric field inside the dielectric material is given by 

(-l)'(X / jca)(e / (e -1),/2 )cosf $-j^)f (z, t) + c. c.,    (12a) 

(-D'cosfs^Wo + cc., (12b) 

f(z,t) + c.c, (12c) 

^(f 



where £ in Eqs. (12a) and (12b) is given by Eq. (10) in the appropriate limit Similarly, the axial 

components of the electric field inside the dielectric liner is given by 

\TJ    Tea 

(-l)<sinfe^W) + c.c., (13a) 

(-l)'(jca/X)((e-l),/2/e)sin^^Wt)+c.c.,    (13b) 

b"rf(z,t) + c.c. (13c) 
b-a 

Using these expressions one can readily verify that the field components satisfy the appropriate 

continuity and boundary conditions at the surface of the liner (r = a) and at the conducting wall (r 

= b). 

Other regimes of the dispersion relation in Eq. (6) can be evaluated but do not lead to 

phase velocities equal to c. Simplification of the dispersion relation in Eq. (6) in the regime of 

long wavelengths may be made by taking otob « 1, i.e., A/b » 27t(e -1)1/2. This regime is 

incompatible with phase velocities equal to c, as is shown below. The dispersion relation, in this 

regime, takes the form 

co2/c2-k2 = 8/a2-E-,(2a0)
2logc(b/a). 

The solution of this dispersion relation when the phase velocity is equal to c can be written in the 

form 

£ = 2*(e 
D -^rft?H ■ 

To be consistent with the inequality defining this regime we require X / (27tb(e -1)1/2 J »1, 

which is impossible since b > a and e > 1. Hence, there is no solution to the dispersion relation as 

X becomes large compared to the dimensions of the outer conductor. The final regime mat we 

identify explicitly corresponds to ocoa « 1 and otob » 1. Again this regime is incompatible with 



phase velocities equal to c since the dispersion relation reduces to 2£ = - (otoa) loge(otoa). In the 

limit oo -> 0, the RHS vanishes and hence no solution to the dispersion relation exists. 

HI.      Critical Average Plasma Density 

The large fields needed for acceleration can ionize the dielectric material and change the 

dispersive properties of the waveguide. If die dispersive properties change sufficiently phase 

velocity slippage will occur and the acceleration will cease. As ionization takes place the 

dielectric constant changes from e to e + &, where 5e = - toJ / ü)2 is the contribution to the 

dielectric constant due to ionization, eop = (4roj2(np) / m)    is the average plasma frequency, q 

is the charge and m is the mass of an electron and (np) is the average plasma density within the 

waveguide, i.e., (np) is the peak plasma density times the ratio of the cross-sectional area of the 

plasma to the cross-sectional area of the waveguide. When the change in F(oto) in Eq. (6) due to 

ionization equals ~ 8/a2, the optical properties of the guide change significantly and phase velocity 

slippage disrupts the acceleration. Ionization in the dielectric material will not disrupt the 

acceleration provided 

|5e| = Q)2/co2«(8/a2)|aF/ae|-1. (14) 

This inequality defines a critical average plasma density within the dielectric, licit, given by 

}treV  a  ; 

where re = q2/mc2 = 2.8 x 10'13 cm is the classical electron radius. If the average plasma density 

(np) generated within the dielectric exceeds n„n the acceleration is disrupted because of phase 

velocity slippage. 



The critical average plasma density can be evaluated in the limiting cases discussed in 

connection with the dispersion relation in Section EL The critical average plasma density in the 

three cases is 

ncrit = 
e2    1 

2na2re b-a 2e-\ (16b) 

1, (16c) 

where Eqs. (16a)-(16c) refer to Case 1-3, respectively. As an illustration we take e = 2, a = 100 

\im, a/(b-a) = 2 and find that the critical density for phase slippage in Case 2 is n^t = 5 x 10 

cm"3, and is independent of the wavelength. For a 10 \im wavelength, this value is more than two 

orders of magnitude smaller than the plasma density for complete reflection (-101 cm"). 

IV.      Ionization in Solids 

The rate of change of plasma density (density of free electrons) is given by 

^ = S + Wnp-vrnp, (17) 

where S is the photo-ionization source due to electron tunneling, W is the collisional ionization 

rate, and vr is the recombination rate. The photo-ionization source acts as an initial source of free 

electrons which are further increased in number by collisional processes, i.e., by electron 

avalanche. Typically, for parameters of interest here, the recombination rate is small compared to 

the collisional ionization rate, i.e., vr < W, and will be neglected. Note that S and W have units of 

sec"1 cm'3 and sec"1 respectively and will be specified later. The solution of Eq. (17) is 



np = (S / W)(exp(Wt) -1)+ np0 exp(Wt), 08) 

where npo is the seed electron density and it is assumed that the plasma density remains small 

compared to the neutral density. 

A.       Collisional Ionization 

The collisional ionization rate can be estimated by using a classical free electron model for 

the electron energy gain. The rate of change of energy of an electron undergoing collisions in the 

presence of a temporally periodic electric field is given by [21^2] 

dU=    q2E2Vm     _2m (19) 

dt     2m(G)2+v2
n)      M 

where U is the electron energy, E is the peak electric field amplitude, vm is the momentum 

transfer frequency, and M is the mass of the neutral atoms. The first term on the right-hand side 

of Eq. (19) represents the rate of energy increase of an electron undergoing collisions while being 

accelerated in the alternating field. The second term represents the energy damping due to 

inelastic collisions between electrons and neutral atoms. Note that E in Eq. (19) refers to the 

peak electric field in the dielectric. Equation (19) indicates that the electron energy increases 

monotonically and saturates because of inelastic electron collisions with neutral atoms. Solving 

Eq. (19), we obtain 

U(t) = Usat(l-exp(-v0t)), (20) 

where Usat = (vm / v0 Vl + v^ / co2)~ U0s is the saturation (maximum) electron energy, 

U0s = mvos / 2 is the electron oscillation energy, V& = qE/mco is the oscillation velocity and v0 = 

10 



2mvJM is the energy damping frequency. Typically, in solids vm ~ 1015 sec*1 [23] and v0 - 1011 

sec*1. When the electron energy reaches the ionization energy Ui, the electron collisionally ionizes 

the atom. The time for this to occur is the ionization time W1. Setting U = Ui and t = W"1 in Eq. 

(20) determines W, 

W—Vo/loged-Uj/Urt), (21) 

for Ui/U« < 1 and W = 0 for Ui/U* > 1. For Ui/U«, « 1. Eq. (21) becomes 

W = (U0s / Ux )vm / (vj, / a2 +1). Note that (U, AJo,)l/2 = * is the Keldysh parameter [24] and 

% < 1 corresponds to the tunneling ionization regime. As noted earlier, we assume that the 

ionization takes place within the dielectric material. The minimum electric field for ionization, 

associated with long pulses, can be estimated from Eq. (20) by taking U(t -¥ «*>) = Ui: 

E = (2m/M),/2[(co2
+v2

m)
,/2/Q0]uI^, (22)    . 

where Ut = Uj / UH is the atomic ionization energy Ui normalized to that of hydrogen, 

UH = q2 / (2a0) = 13.6 eV, E = E / EH is the peak electric field normalized to the hydrogenic 

electric field EH = |q|/aj = 5.2 GV /cm, fi0 = 4JCUH / h = 4.1 X 1016sec"1 is the atomic 

frequency, a0 = (h / 2rcj)2 / m = 5.3 x 10-9 cm is the Bohr radius, and h is Planck's constant 

Irregularities on the surface of the dielectric liner may permit surface plasma formation at electric 

field amplitudes substantially smaller than mat implied by Eq. (22). The results, in this paper, for 

maximum accelerating fields are therefore expected to be upper bound estimates. The rough 

estimate for the collisional ionization rate in Eq. (21) is used, together with the tunneling source 

term S, to obtain the plasma density in Eq. (18). 

11 



B.       Tunneling Ionization Source 

The ionization source in solids, averaged over times much longer than the field period 

27C/CÜ, in the tunneling regime ft = (Ui/U&)l/2 <l,is given by [25] 

..S-A.E^Äpf-ft/E], (23) 

where 

A^LSxlO40/^5'4, (24a) 

fl,=0L56ÜI
3/2. (24b) 

In Eqs. (23) and (24), A« has units of sec"1 cm"3- 

Figure 3 shows the tunneling ionization source term and the collisional ionization rate as 

functions of the normalized electric field. For pulses that are shorter than a few picoseconds, 

collisional ionization is negligible for W < 1010 sec*1. The precipitous drop in W below E = 2xKT* 

occurs as Umax approaches U: in Eq. (21). The tunneling term S does not lead to significant 

ionization for E < 5xl0'3, but ionization increases rapidly for higher fields. 

V.       Limitation on Laser Pulse Duration and Accelerating Gradient 

To avoid modifying the dispersive properties of the waveguide the average induced 

plasma density must be less than the critical average density ncrit, i.e., (np) « ncrit. Using 

Eq. (18) for np we find that 

12 



(np) = ((S / WXexp(WxL) -1))+np0(exp(WTL)) « n^, (25) 

where ( ) denotes the average over the cross-sectional area of the waveguide and TL is the laser 

pulse duration. The average plasma density in Eq. (25) consists of a tunneling/collisional 

ionization terra and a contribution from the seed electron density. To perform the cross-sectional 

average we note that in the ionization part, the source function S is a highly sensitive function of 

the field amplitude through the exponential dependence on the field [see Eq. (23)]. Because of 

this sensitivity, the spatial average of the ionization term in Eq. (25) is applied only to the function 

S while the collisional ionization rate W is evaluated at the peak field amplitude. The cross- 

sectional average of the contribution from the initial plasma electron density can be written as 

(exp(WTL)) = f exp(WratL) where f is a filling factor due to the spatial variation of the field 

within the dielectric. Employing these approximations, Eq. (25) becomes 

W-1(exp(WmxL) - lXS>+fnpo exp(WmxL)« n^, (26) 

where Wm is the maximum value of W, i.e., W evaluated at the peak electric field Em inside the 

dielectric. The filling factor f is found to be given by 

f = 

fl/2, (27a) 
(*/8)1/2(WmTL)-1/2, (27b) 
2(b-a)/b, (27c) 

where Eqs. (27a) refers to either Case 1 or Case 2 when WBTL « 1, Eq. (27b) refers to either 

Case 1 or Case 2 when WmTL » 1, and Eq. (27c) refers to only Case 3. 

13 



The pulse duration of the driver in the ICA roust not exceed a critical pulse duration w 

Substituting Eq. (16) into Eq. (26) we obtain the following inequality on the pulse duration 

*L « %A = Wm Ioge[(toW„ +1) / (1 + fapoW« / <S»] . <28) 

where To = iW<S>. If the laser pulse duration is small compared to the collisional ionization 

time, Le., TL « W"1, and the initial plasma density is zero, ly = 0, the inequality in Eq. (28) 

becomes xL « T0 = "crit / (S) • "H* inequality in Eq. (28) places a limit on the pulse duration, 

which is a function of the accelerating gradient, Ez = (KI a7c)E0. If the pulse duration exceeds 

the value given by Eq. (28), sufficient ionization will take place to modify the dispersive 

properties of the waveguide, causing phase velocity slippage to terminate the acceleration. 

The critical time lent in Eq. (28) must be determined explicitly for the three cases. The 

average ionization source term is 

b 

<S) = 2rc[Srdr/(7cb2), (29) 
a 

where the radial variation in S arises from that of the electric field. Since the ionization source 

terra S is a highly sensitive function of the electric field due to the exponential factor in Eq. (23), 

the integral in Eq. (29) can be approximately evaluated. In the limit defined by the inequality in 

Eq. (7) the electric field is given by Eqs. (12) and (13). Making use of these expressions in Eq. 

(29) and expanding about each of the I peaks for Cases 1 or 2, and about the peak at r = a for 

Case 3, we obtain 

14 



<s) = a 
2b 

^l^)(Em/ßsf, 
2 üm' 

8Em/ßs, 

(30a) 

(30b) 

where Eq. (30a) refers to either Case 1 or Case 2 and Eq. (30b) refers to only Case 3 and Sm is S 

evaluated at Em = Em / EH, i.e., 

Sm=AsEm
5/2exp[-ßs/Em]. 

Using Eq. (30) for (S) and Eq. (18) for lUnt, we obtain 

(3D 

*o = ncrit/(S) = 
ez   1     a 
8na2r, b-aa2Sr 

-    \l/2 

16     a   /R .=  \i/2 
i/2„K_aVPs/tlm/   ' 

(32a) 

(32b) 
nl"eb-a 

.ß./En. (32c) 

where Eq. (32a) refers to Case 1, Eq, (32b) refers to Case 2, and Eq. (32c) refers to Case 3. 

From Eq. (28), values of To for the various cases can be used to determine the limits on the pulse 

duration and the accelerating gradient 

VI.      Gas-Filled Inverse Cherenkov Accelerator 

Another configuration for the inverse Cherenkov accelerator consists of a waveguide that 

is filled with a neutral gas. The presence of the neutral gas modifies the electromagnetic 

properties of the waveguide making the phase velocity of the accelerating electric field equal to 

the speed of light For sufficiently low gas densities, the collisional scattering of the accelerated 

electrons can be neglected [26]. 
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In this section we consider the limitations on electromagnetic pulse duration and 

accelerating gradient of an ICA consisting of a gas-filled cylindrical waveguide of radius a. For 

the TM mode the fields are given by Eq. (1), with k± - (ECO
2

 /c2 -k2)   , where e> 1 is the 

dielectric constant of the gas. The dispersion relation for the TM mode is given by k±a = p0n, or 

£<D2/c2-k2 = (p0n/a)2, (33) 

where po«, is the nth zero of Jo. Writing e = 1+AE, where AE > 0 is the contribution of the neutral 

gas to the dielectric constant, from Eq. (33) we find that, for the phase velocity to equal c, the 

wavelength is given by 

X/a = (27c/p0n)Ae,/2. (34) 

Since Ae « 1 for gases at moderate pressures, i.e., a few atmosphere, the expression in Eq. (34) 

implies that A/a « 1. Noting that E, = (X/na)Eo on axis, the accelerating field is necessarily small 

compared to the field amplitude Eo. 

To determine the critical average plasma density n«* in the gas-filled ICA, we proceed as 

in Sec. EH. Accounting for the ionization of the ambient gas, we write E = 1 + Ae - (Op I co   and 

obtain the critical plasma density 

nait = JtAE / (reX
2) = p?n / 47ta2re. (35) 

Typically Ae ~ 10** for a gas at atmospheric pressure, and for a X = 10 um laser-driven gas-filled 

ICA, the critical density is found to be ncnt *= 101 cm . 

The development of plasma in the gas, undergoing ionization due to tunneling and 

collisional processes, is given by Eq. (17). The ionization source terra in Eq. (17) for a gas is 

given by [24] 
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S = A£E-1/2exp(-ß,/E), (36) 

where 

Ag = L6xl017u//4nn0, (37a) 

ßg=0.67U?/2, (37b) 

n„o is the neutral gas density in units of era"3 and A, in Eq. (37a) is in units of sec"1 cm'. The 

collisional ionization rate W is given by Eq. (21). Similarly, the rate of change of electron energy 

is given by an Eq. (19), where, the momentum transfer frequency vn in a gas is proportional to the 

pressure and is on the order of 1012 sec"1 at atmospheric pressure [21,22]. The limitation of the 

pulse duration and accelerating gradient in the gas-filled ICA is given by Eq. (28). For a gas-filled 

ICA, to = ncri,/<S>, where n^, is given by Eq. (35), <S> is 

<S) = Sm(2KEm/ßg)
1/2, (38) 

and Sm is the value of S evaluated at peak electric field Eo, i.e., E0 = Em / EH. The filling factor 

f in Eq. (28) for the gas-filled waveguide ICA is 

f 1/2, 
f= (39) 

l(K/2),/2(WmTL)-,/2, 

where the upper (lower) value is for WmTL «1 (»1). 

VII.     Group Velocity Slippage fPulse Lethargy) 

Ionization effects place an upper limit on the pulse duration of the electromagnetic driver, 

see Eq. (28). Group velocity slippage or pulse lethargy, on the other hand, places a lower limit on 
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the pulse duration of the driver. That is, the distance the pulse slips behind the accelerated 

electrons must be less than the pulse length, 

(v71-c-1)L<TL, (40) 

where v, is the group velocity and L is the propagation distance. Using Eq. (8) the group velocity 

vg s 3o) / 3k is given by 

1+(k 147t)(e - l)"l/23F/3a0 v„ =c g      l+a/4jt)e(e-ir1/2aF/3a0' 
(41) 

where F = (4ao/ea)tan(ao(b - a)). Making use of Eq. (41), the group velocity in the three cases is 

given by 

vg/c 

l/£. 

l + 2(b-a)/(ea) 
l + 2(b-a)/a 

l + 4(b-a)/(ea) 

(42a) 

(42b) 

(42c) 
l + 4(b-a)/a 

Note that Eq. (42a), which corresponds to Case 1, indicates that the group velocity - c/e. This is 

consistent with the relationship VphVj = c2/e for a completely filled waveguide. Substituting Eq. 

(42) into Eq. (40) yields the limit on the interaction length due to pulse lethargy, 

L<G(e,a,b)cTL, (43) 

where 

G = (e-1)"^ 

1, 

l + ea/2(b-a), 

l+ea/4(b-a). 

(44a) 

(44b) 

(44c) 
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In obtaining Eq. (41) we have neglected the effects of the induced plasma, i.e., G}> = 0. For a gas- 

filled ICA, discussed in Section VI, the group velocity, neglecting transverse effects, is given by 

vg / c « e~l, which, upon substitution into Eq. (40) yields the limit on the interaction length, 

L<(e-l)",cxL, (45) 

which is identical in form to Case 1, Eq. (44a), of the dielectrically-lined configuration. 

The limitation on the pulse length due to ionization, Eq. (28), together with the limitations 

imposed by pulse lethargy, Eqs. (43), present a severe constraint on the interaction length, and 

therefore the maximum energy gain, in the ICA. The limitation on the interaction length L can be 

stated in terms of the maximum electron energy Um« and the acceleration gradient Ez. In practical 

units the maximum electron energy gain in the ICA in terms of the acceleration gradient and pulse 

duration is 

U^JMeV] < 3 x 108G(£, a, b)Ez[MV / m]xL[sec], (46) 

where the values of E* and xL are obtained from Eq. (28). Using Eq. (28) the pulse duration in 

Eq. (46) can be written in terms of the accelerating gradient Hence, the maximum electron 

energy, given by Eq. (46), can be expressed in terms of only the accelerating gradient 

Vm.   Results 

We first describe the results for the ICA configuration with a dielectric liner for three 

wavelength drivers, X = 10 Jim, 1 mm, and 1 cm. The plots principally show the scaling of the 

critical time with the accelerating gradient as the parameters are varied. The minimum value of 

tent shown in all the figures corresponds to a pulse duration of 30 wave periods. Technological 

issues as well as longitudinal dispersion limit the pulse duration to several tens of wave periods. 
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For a X = 10 um, 1 mm, and 1 cm wavelength driver, the minimum value of tmt used in the figures 

is 1 psec, 0.1 nsec, and 1 nsec, respectively. 

Figure 4 is a plot of the critical time as a function of the accelerating gradient, for X = 10 

Jim, as the inner radius of the waveguide is varied. The dielectric layer thickness b-a = 50 fim in 

all three cases, with a = 30,50, and 100 um for the three curves. Figure 5 shows the variation of 

Ten, as a function of Ex, for X - 10 um, for various values of initial electron density in the dielectric 

liner. The addition of a small number of electrons to seed the collisional ionization process 

reduces the allowable accelerating gradient E* for a given value of tent. Figure 6 shows the 

variation often, versus the accelerating gradient, for X = 10 Jim, for several values of ionization 

energy associated with the dielectric liner material. For a given critical pulse time Tent, higher 

ionization potentials permit higher accelerating gradients. Figure 7 plots the critical time as a 

function of the accelerating gradient, for X = 10 \im, as the dielectric constant e is varied. As the 

dielectric constant is increased, the electric field in the dielectric decreases (to maintain continuity 

of the displacement field eEr across the vacuum-dielectric boundary), and thus the ionization level 

is reduced. It should be noted, however, that for high values of e, ionization is likely to occur at 

the surface rather than in the bulk of the dielectric layer, and thus the high gradients predicted for 

large values of E result in surface breakdown. 

Figure 8 is a plot of the maximum electron energy Um» as a function of the accelerating 

gradient E* from Eq. (46). In obtaining this plot the driver pulse duration tL is set equal to tent 

given by Fig. 4. For energy gains above U^ ~ 10 MeV, Fig. 8 indicates that the accelerating 

gradient is limited to E* - 20 MV/m. This rather low value of accelerating gradient corresponds 

to the onset of collisional ionization (see Fig. 3) for these parameters. 
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We now consider the example of a millimeter wave driver. Figure 9 shows the variation of 

Tmt with Et, for X = 1 mm, as the radius of the inner-wall radius is varied. The scaling here is 

similar to the X = 10 |im case shown in Figure 4, but the allowable accelerating gradient is lower. 

The longer pulse lengths, compared to the 10 Jim wavelength example, are the principle reason 

for the lower accelerating gradients. Recall mat the minimum value of T^, in all the examples, is 

taken to be equal to 30 wave periods of the driving field. This is an arbitrary but technologically 

reasonable lower limit on the pulse duration. Figure 10 is a plot of w versus Ex for X - 1 mm, as 

the seed electron density is varied. This case is similar to the X - 10 Jim case shown in Fig. 5. 

The addition of a small amount of seed electrons reduces the accelerating gradient significantly. 

A Case 1 example is shown in the next figure, where the driver wavelength is larger than the inner 

dielectric radius, X > a. Figure 11 shows la* versus Ex for X = 1 mm and initial (seed) electron 

density npo = 0 and 1 cm'3. The lower limit on Ez is due to the sudden turn on of collisional 

ionization rate W as a function of electric field, see Fig. 3. Figure 12 shows the maximum 

electron energy Um» as a function of the accelerating gradient Ex for the millimeter wave example 

in Fig. 9. Figure 12 indicates that for energy gains in excess of Um* - 20 MeV the accelerating 

gradient is less than Ex - 20 MV/m. 

The solid curve in Fig. 13 shows To* versus Ex for a driver wavelength of X = 1 cm and 

a = 0.2 cm, corresponding to Case 1. The dashed curve in Fig. 13 shows the maximum electron 

energy Um« as a function of the accelerating gradient E,. Figure 13 indicates that for energy gains 

above Umax ~ 10 MeV the accelerating gradient is less than Ex ~ 100 MV/m, due to the onset of 

collisional ionization.   . 
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Figures 14 and 15 show the critical pulse duration Xa* versus the accelerating gradient E* 

for a gas-filled ICA" The gas is taken to be helium having an ionization potential of Ui = 24.6 eV. 

The variation of the critical time Xa* with the accelerating gradient E* at X - 10 um, is shown for 

gas pressures Pg of 3,10, and 30 atmospheres. Since £ - 1 = Ae = 7 x 10*5 at 1 atm for helium, the 

dispersion relation for the lowest order mode, pa, = 2.4, gives a = 265,145, and 84 Jim 

respectively for the three pressures. This gas-filled case has a lower accelerating gradient than the 

dielectric liner case shown in Fig. 4, because for phase velocities equal to c, the dispersion relation 

requires the wall radius to be so large that Ex « E/r = a). In the dielectric liner cases, E* can be 

the larger field component Figure 15 is a plot of T«it versus E* for a X = 1 mm driver with the 

same three helium gas pressures shown in Fig. 14. The wall radius a = 26.5,14.5, and 8.4 mm for 

gas pressures Pg of 3,10, and 30 atmospheres, respectively. The allowable accelerating gradient 

is a few MV/m. This is due in part to the large sJX ratio required to have phase velocities equal to 

c. In addition, the collisional ionization (avalanche) time 1/W even at these modest fields is much 

less than the pulse duration. Figure 16 shows the maximum electron energy Um« as a function of 

the accelerating gradient Ez for the gas-filled ICA using the parameters in Fig. 14, with gas 

pressures 3,10, and 30 atm. Comparing Fig. 16 with Figs. 8,12, and 13 we find that higher 

acceleration gradients can be obtained in the gas-filled ICA to reach a given maximum energy as 

compared to the dielectrically-lined ICA configuration. 

IX.      Summary and Discussion 

The analysis in this paper implies that the combination of ionization and pulse lethargy 

effects impose severe limitations on the energy gain in inverse Cherenkov accelerators. Two 
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configurations for the ICA have been considered in which the electromagnetic driver (e.g., laser, 

millimeter or centimeter wave source) is propagated in a waveguide that is, i) lined with a 

dielectric material or ii) filled with a neutral gas. Using a dielectrically-lined or gas-filled 

waveguide, i) avoids diffraction of the electromagnetic driver beam, ii) overcomes phase velocity 

slippage, and iii) the acceleration is in vacuum (for the dielectrically-lined configuration). In either 

configuration the electromagnetic driving field has an axial electric field with phase velocity equal 

to c. The intensity of the driver in the ICA, and therefore the acceleration gradient, is limited by 

tunneling and collisional ionization effects. Partial volume ionization of the dielectric liner or gas 

can lead to significant modification of the electromagnetic properties of the waveguide, altering 

the phase velocity of the accelerating field and causing phase velocity slippage, thus disrupting the 

acceleration process. Ionization effects therefore impose an upper limit on the driver pulse 

duration. The driving pulse, however, cannot be arbitrarily short in duration since the pulse, 

having a group velocity less than c, slips behind the accelerated electrons. This effect is referred 

to as group velocity slippage or pulse lethargy and places a lower limit on the pulse duration. 

Limitations on the driver pulse duration, accelerating gradient and maximum accelerated electron 

energy, due to ionization effects and pulse lethargy, have been obtained. 

To obtain these limitations a dispersion relation for transverse-magnetic (TM) modes of a 

dielectrically-lined and gas-filled optical waveguide has been derived. The TM mode consists of a 

radial and an axial electric field as well as an azimuthal magnetic field. The axial electric field, 

which is responsible for acceleration, is peaked on axis, while the radial electric field vanishes on 

axis. It is shown that when the average plasma density reaches a critical value, due to ionization, 

the optical properties of the waveguide are modified and the phase velocity of the electromagnetic 
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wave is significantly altered, resulting in phase velocity slippage. The buildup of the plasma within 

the dielectric material is analyzed using a rate equation which includes tunneling and collisional 

ionization. We have obtained an expression for the limit on the electromagnetic pulse duration in 

terms of the accelerating gradient for bom the didectrically-lined and gas-filled waveguide ICA 

configurations. To avoid the effects of ionization, the pulse duration of the electromagnetic driver 

XL in the ICA must be less than a critical pulse duration time to* given by Eq. (28). The value of 

Terit is a sensitive function of the peak electric field and thus the accelerating gradient The 

limitation on the pulse length due to ionization, Eq. (28), together with the limitations imposed by 

pulse lethargy, Eqs. (43) and (45), present a severe limit on the interaction length and therefore 

the maximum energy gain, Eq. (46), in the ICA. The maximum accelerated electron energy can 

be expressed in terms of only the accelerating gradient Our results indicate that relatively modest 

accelerating gradients can be achieved in the ICA. 
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onductor 

dielectric 

Fig. 1.       Schematic of a dielectrically-lined optical waveguide. The dielectric material with 

dielectric constant e lies between the vacuum (0 < r < a) region and perfect conductor 

at r = b. 
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Fig. 2.       Axial and radial components of the electric field for a dielectrically-lined waveguide 

supporting an axially symmetric TM mode with phase velocity equal to c. The solid 

(dotted) curve denotes the radial (axial) component of the electric field normalized to 

the peak radial field at r = a. The parameters are X = 10 um, a = 30 um, b - a = 50 

p.m. and e = 3. 
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Fig. 3.       Plot of tunneling ionization source function S and collisional ionization rate W as a 

function of normalized electric field E = E / EH- In this plot Ui = 8 eV, X = 10 Jim, 

ii -«„-i vffi = 10" sec'1, and v0 = 10u sec". 
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Fig. 4.       Plot of critical pulse time Xaii versus the accelerating gradient E^ for a laser of 

wavelength X = 10 um, inner radius a = 30 \im (solid curve), 50 pm (dotted curve), 

and 100 ^m (dashed curve), b - a = 50 ^tra. In addition, £ = 3, Ui = 8 eV, npo = 0, vm 

1015sec-1andVo=10"secl. 
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Fig. 6.       Plot of critical pulse time Tent versus the accelerating gradient F^ for a laser of 

wavelength X = 10 ^m. The ionization potential Ui = 4 eV (dotted curve), 8 eV (solid 

curve), 12 eV (dashed curve). The other parameters are the same as in Fig. 5 with ripo 

= 0. 
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Fig. 5.       Plot of critical pulse time Xcnt versus the accelerating gradient F^ for a laser of 

wavelength X = 10 Jim. The initial electron density n,* is 0 (solid curve), 1 cm" 

(dotted curve), and 105 era'3 (dashed curve). In addition, a = 30 Jim, b = 80 p.m, e = 3, 

Ui = 8 eV, vB = 1015 sec*1 and v0 = 10" sec"1. 
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Fig. 7.       Plot of critical pulse time Tc* versus the accelerating gradient Ex for a laser of 

wavelength 3l = 10 Jim. The dielectric constant e = L5 (dotted curve), 3 (solid curve), 

9 (dashed curve). The other parameters are the same as in Fig. 6 with Ui = 8 eV. 
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Fig. 8.       Plot of maximum electron energy versus accelerating gradient for the parameters in 

Fig. 4 with a = 30 um (solid curve), 50 ^m (dotted curve), and 100 urn (dashed 

curve). 
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Fig. 9.       Plot of critical pulse time tent versus the accelerating gradient Er for a millimeter wave 

driver, X = 1 mm. The inner radius a = 3 mm (solid curve), 5 mm (dotted curve), and 

10 mm (dashed curve), where b - a = 5 mm. In addition, e = 3, Ui = 8 eV, npo = 0, vm = 

ii ...,„-» 10I3sec",andvo=10"sec-\ 
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Fig. 10.     Plot of critical pulse time tent versus the accelerating gradient E* for a millimeter wave 

driver, X = 1 mm. The initial electron density iipo is 0 (solid curve), 1 cm*3 (dotted 

curve), and 105 cm'3 (dashed curve). The parameters are the same as in Fig. 9, with a 

= 3 mm and b = 8 mm. 
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fig. 11.     Plot of critical pulse time Tent versus the accelerating gradient Ez for a millimeter wave 

driver, % - 1 mm. The initial electron density npo is 0 (solid curve) and 1 cm'3 (dashed 

curve). The parameters are a = 0.2 mm, b = 0.283 mm, e = 10, Ui = 8 eV, vm = 10 

sec"1 and v0 = 10" sec"1. 
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Fig. 12.     Plot of maximum electron energy versus accelerating gradient for the parameters in 

Fig. 9 with a = 3 ram (solid curve), 5 mm (dotted curve), and 10 mm (dashed curve). 
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Fig. 13.     Plot of critical pulse time Xan versus the accelerating gradient Ex (solid curve) and 

* Um« versus E* (dashed curve) for X = 1 cm and a = 0.2 cm.    In addition, b - a = 

0.0833 cm, e = 10, Ui = 8 eV, tipo = 0, v» = 1015 sec' and v0 = 10" sec1. 
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Fig. 14.     Plot of critical pulse time le* versus the accelerating gradient Ex in a gas (helium)- 

filled ICA with laser wavelength X = 10 \un. The gas pressures and corresponding 

wall radii are 3 atrn and 265 Jim (solid curve), 10 atrn and 145 Jim (dotted curve), and 

30 atm and 84 um (dashed curve), with Ui = 24.6 eV, vJPt = 1012 sec'Vatm and vVPg 

= (2m/M)v J?t = 3 x 10* sec'Vatm. 
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Fig. 15.     Plot of critical pulse time T^ versus the accelerating gradient Ez in a gas (helium)- 

fdled ICA with laser wavelength X = 1 mm. The gas pressures and corresponding wall 

radii are 3 atra and 26.5 mm (solid curve), 10 atm and 14.5 mm (dotted curve), and 30 

atra and 8.4 ram (dashed curve), with Ui = 24.6 eV, \J?t = 1012 sec'Vatm and vVPg = 

(2m/M)v„/P8 = 3 x 108 sec'Vatm. 
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Fig. 16.     Plot of maximum electron energy versus accelerating gradient for the parameter in Fig. 

14 with Pj = 3 atm (solid curve), 10 atm (dotted curve), and 30 atm (dashed curve). 
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